1. 首页 > 职业教育

高中数学竞赛规则详解:考纲及辅导书籍推荐指南!

大家好,今天给各位分享高中数学竞赛规则详解:考纲及辅导书籍推荐指南!的一些知识,其中也会对进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!

数学竞赛奖项的通用性最高,即使是对学科有限定的自主招生院校,也会对数学竞赛的学生敞开大门。

通过竞赛,最理想的情况是在省级比赛中获得好的名次,进而进入国赛获得保送资格,从而保送到高校。

即使没有进入国赛、获得保送资格,数学竞赛也能让学生在自主招生初审以及笔试中获得巨大的优势,从而更有机会获得高考降分。

再退一步,即使没有获得自主招生降分,学生的学习能力和思维能力也会在这个过程中得到提高,这对高考以及将来的发展都是大有裨益的。

推荐阅读往期文章:《纵观竞赛生的出路如何抉择?|竞赛的生涯百态》

√ 数学竞赛考试时间规划

数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年9月中旬的第一个星期日举行“全国高中数学联合竞赛”。(简称数学联赛)

数学联赛分为初赛和复赛(即一试和二试),在这项竞赛中取得优异成绩的全国约200多名学生有资格参加由中国数学会奥林匹克委员会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。

冬令营邀请各省、市、自治区在全国高中数学联赛中的优胜者参加,分配原则是每省市区至少一人,然后设立分数线择优选取。

各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。

数学联赛一般为每年9月中旬的第一个星期日举行,分为初赛和复赛(即一试和二试)。

以2017年时间为例,高中数学联赛初赛(一试)时间为2017年9月10日(星期日)北京时间:8:00—9:20

高中数学联赛复试(二试)时间为:2017年9月10日(星期日)北京时间:9:40—12:10

联赛的参赛对象是在2017年全国高中数学联赛各省赛区预赛中,获取参加全国高中数学联赛决赛资格的全部学生。

评审会选出各省代表队成员(省队)参加全国中学生数学竞赛决赛(冬令营)(CMO)。

全国决赛即冬令营,决赛时间一般在12月左右具体时间可查看当年的通知,2016年冬令营在11月底。

全国决赛的参赛对象即为高中数学联赛中选拔出的各省省队成员。

冬令营(全国决赛)最后会选拔60人参加国家集训队,并颁发金银铜牌奖项。

经过集训队的选拔,选拔出6位参赛学生作为中国代表队参赛选手。除此之外,并配有一名领队、一名副领队和观察员,进入中国国家代表队,参加国际数学奥林匹克(IMO)。

具体人数视该省当年的联赛考试成绩而定,且对于承办方省份有一定额外的优惠。

复赛和全国决赛内容范围和深度,远高于高考,取得数学竞赛冬令营前60名学员是被保送到清华北大的。

学生报名以后,十几天后就会发张准考证,里面有时间地点,学校会提前通知报名的。

√ 数学竞赛各阶段学习规划

初 中 阶 段

初一阶段

这一阶段学生刚刚进入初中,应当先进行初中代数知识的学习,打好基础;学习上不必拘泥于年级的限制,可以好好利用暑假及初一上学期充裕的时间,将初中代数知识完整的学一遍,主要包括代数式运算、方程、不等式、函数等几大块内容。

系统学习完初中代数知识后,寒假及初一下学期的这段时间可以重点学习平面几何的知识,同时适当学习一些竞赛数论和组合的内容,以及对之前所学的代数内容进行复习巩固。

这段时间一平面几何的学习为主,主要包括全等三角形、角平分线、三角形、四边形、相似及线段比例、圆等几大块内容。

初一年级以打好基础为主要目标,在学习新知识的同时配以难度适当的习题进行巩固即可,不必强求难度过高的练习。

主要推荐的书籍:《奥数教程》(华东师范大学出版社)、《从课堂到奥数—初中数学培优竞赛讲座》(朱华伟)。选择其中有关代数的章节进行学习。

初二阶段

利用初一一年的时间,我们已经将初中数学知识基本学完了,能力上应当达到能够完整解决简单的竞赛题目的程度。

从新初二暑假开始,就要将学习目标定位在准备初中数学联赛上了,如果之前一轮学习仍有相对薄弱的地方(比如数论),可以先利用暑假时间进行查缺补漏;

之后就可以开始进行第二轮的专题训练了,针对联赛中重点考察的部分进行强化练习。在这一阶段的学习中,应当注意多总结积累解题方法和技巧,对常见题型进行归纳,比如代数中常用变形技巧、几何中常见的基本图形和性质等等。

能力提高类的书籍推荐大家《奥赛经典》中的几何,组合,数论,代数讲得很全面,多数题难度不算太高(注意,是初中版的)

总的来说,这一阶段要努力提高自己的解题能力,为参加初中数学联赛做准备。

初二寒假到初中数学联赛考试前(考试时间为每年3-4月),可以将主要精力转向备战考试,根据自己的情况,每天或每两三天进行一次模拟测试,适应联赛考试的题型和风格。

可以找历届的试题,再找一些比较权威的模拟题,搞懂错题,经常出错的再找竞赛书刷专题。

具体而言,一试的选择填空需要做历年真题,培养的是思维和解题速度;二试代数大题主要是考因式分解基本功;几何大题需要把那些中考不考的割线定理,切割线定理,相交弦定理学完,冲刺一等奖应该要拿下的;数论大题一般比较难,考试的时候不行可以放弃。

初联复赛类书籍推荐:《奥林匹克小丛书初中卷》,是一套,部分题难度高,可适当略过;《初中数学竞赛解题思想与策略》题目精,少,但难度都较大;

还有《初中数学联赛考前辅导》(华东师大出版社)及历年联赛真题。

初三阶段

这一阶段是初中竞赛的一个分水岭,不同学生因为自身情况的不同可以有不同的选择。

一方面,如果之前初二已经拿到了初中联赛一等奖,并且中考压力也不大的一部分学生(取得了签约保送或者二四直升),可以尽快着手学习高中数学知识,以便更早地开始为高中数学联赛做准备。

因为高中数学相比初中来说,在思维和计算等方面的能力上要求都有很大提高,高中联赛的难度也比初联要高很多,并且高中其它科目的学业压力也更大,所以尽早进入高中联赛的学习会有很大的优势。这部分学生可以进入初三少年班进行学习。

另一方面,另一部分学生如果初二参加联赛没有取得理想的成绩,可以一方面继续初联相关内容的强化学习,准备初三参加联赛能冲击一等奖,以及为初升高的自主招生考试做准备;

同时也建议适当开始接触一些初高中衔接的内容(比如初中的锐角三角函数,不妨更深入的学习一下高中三角函数的知识)

总之,能尽早开始高中竞赛的学习是很有意义的。

此阶段可以先做高考和自主招生难度的题目,高考难度推荐《五年高考三年模拟》,自招难度推荐《自主招生考试直通车》(上海交通大学出版社)。

附注:高中数学知识点汇总

l 集合。

l 函数知识。

l 立体几何。

l 解析几何。

l 概率与统计。

l 三角函数。

l 解斜三角形。

l 向量。

l 数列。

l 不等式。

l 逻辑与推理。

l 排列组合。

l 导数。

l 复数。

高 中 阶 段

高一阶段

新高一暑假到高一上学期

从初升高暑假是竞赛生第一次真正意义上地开始高中竞赛的学习,是飞机起飞前的第一冲刺滑行阶段。建议充分利用好这段空闲时间,特别是暑假,完成高联一试和平面几何的学习。

高联一试的知识点与高考基本一致,所以知识在初三一年应该已经基本掌握,现在要做的就是提高技巧和熟练度;

而平面几何在高联二试的四道大题(几何、代数、数论、组合)中一般比较容易,而且初中已经有了基础,平面几何的学习应该是比较轻松的。

对于一试部分的内容推荐书籍是华东师范大学出版社出版的《奥数教程》,注意是高一年级和高二年级的基础篇(只有基础篇)。学数学竞赛的人不可能没听说这一套书,这一系列共分三本,分别在封面注明了高一到高三三个年级。

高一的这一本包括的知识点有:集合、函数、数列、三角函数、向量和立体几何,除了集合包含一定的组合知识,其他的内容均为一试内容(可能还包括一点二试的代数内容),题目非常典型且有难度。

高二这本书基础篇包括:一试难度的不等式,解析几何和复数,提高篇基本就是二试内容了,不推荐在这个阶段完成。

一试还可以做一做《高中数学竞赛培优教程(一试)》(李胜宏),内容非常系统和全面,题目难度适中。

平面几何的内容,推荐书籍:《奥赛经典——奥林匹克数学中的几何问题》,主要由沈文选老师编写,湖南师范大学出版社出版。重点在第一篇,除了三四五六七章(从托勒密到九点圆)可以略看,不是考察重点,其他都要认真看。

建议可以拓展的内容

l 集合的基数与分划。

l 函数极值问题的方法拓展。

l 函数凹凸性。

l 高等数学初步。

l 数列进阶知识(高阶等差数列,不动点法等)。

l 三角恒等变形。

l 向量法在立体几何和解析几何中的应用。

l 函数迭代与抽象函数。

l 不等式的证明技巧拓展。

l 利用参数方程解几何问题。

l 解题方法拓展(包括归纳法,反证法,构造法和极端原理等)。

l 计数问题的拓展(递推,容斥原理等)。

l 多项式的差值与差分。

l 母函数方法。

p.s:√ 关于平面几何的学习

平面几何是竞赛中和高中内容关联比较少的一块,或者说主要和初中知识衔接,因此首先你需要把初中几何知识全想起来,然后通过专题来逐步学习这部分内容。

平面几何首先要注重对基本图形的理解和对几何问题处理手法的掌握,这是大家经常忽视的。另外几何问题在合理安排之下进行丰富的练习之后,通常可以成为学生比较有把握的得分点,经常被视为最容易得分的大题。

但切忌由于听人讲解或者看答案很容易懂就过分地认为几何简单,因为依靠对几何图形的充分理解来形成解题思路才是几何的最大难点。

平面几何需要学习的知识包括如下部分:

l 常见问题类型:共线,共点,同一,长度关系,面积关系等。

l 重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理等

l 几何问题的面积和面积方法。

l 几何问题的三角函数方法。

l 三角形的内心,外心和垂心及其性质。

l 几何中的一些极值点(例如费马点)。

l 一些几何基本事实(例如周长一定的闭合图形中,圆的面积最大)。

l 几何中的运动:反射、平移、旋转。

l 几何问题的复数方法、向量方法。

l 平面凸集、凸包及应用。

这些内容推荐除了《奥赛经典》,还可以参考《数学奥林匹克小丛书》第七,九册和《奥数教程》来入门和学习知识。

考虑到平面几何相对容易得分,方法方面多花些时间学习《平面几何证明方法全书》是值得的,此书非常好。

高一寒假到高一下学期

这一阶段算是高中竞赛学习的第三个阶段,这一阶段要开始接触二试部分较难知识(数论、组合)。二试还有三块重要的内容你需要接触:代数、数论和组合。

p.s:√ 关于代数部分的学习

l 高斯函数。

l 周期函数,带绝对值的函数。

l 进阶三角函数(三倍角公式,三角不等式等)。

l 数学归纳法进阶(第二数学归纳法,广义归纳法)。

l 进阶的函数递归,特征方程法。

l 函数迭代,函数方程。

l 平均不等式进阶。

l 进阶不等式:柯西不等式,排序不等式,琴生不等式等。

l 不等式解题策略。

l 复数进阶(指数形式,欧拉公式,单位根等)

l 组合恒等式。

l n次方程(多项式)。

代数方面,代数不一定考,要考也只能是不等式或者数列函数等和一试紧密联系的部分。

参考书方面还推荐《数学奥林匹克小丛书》中代数内容。

高二年级的《奥数教程》提高篇不等式的部分,难度适中,没有什么特别的亮点,但是入门已经足够了。

p.s:√ 关于数论部分的学习

初等数论知识与高考内容联系不算紧密,需要额外的学习。可以说初等数论有大量的小定理和小结论,并有很多解题方法需要掌握。

参考联赛大纲,需要学习的知识基本包括整除,素数,同余等基本知识,并且需要自己形成对于数论问题的一套处理思路,并需要熟练运用一些常见的数论定理。

参考联赛大纲,需要学习的知识主要总结如下:

l 数的整除,质数。

l 公约数,公倍数,分解质因数,剩余类等。

l 同余问题,丢番图方程。

l 数论基本方法:无穷递降法,欧几里得辗转相除法等。

l 重要数论定理:费马小定理,欧拉函数,孙子定理和裴蜀定理等。

《奥数教程》高三年级里面的数论部分(第6-10讲以及第19、20讲),还有《数学奥林匹克小丛书高中卷10数论》,两本书均由余红兵老师编写。

非常适合入门阅读,知识点和问题分析写下的注解,一步步引导你思考和挖掘问题,这是竞赛书籍里绝无仅有的,值得你一个一个字地细看深思。

而小丛书那一本,就已经具有一定的难度了,题目非常典型和深刻,属于进阶的数论书,适合在入门后阅读。

参考书方面还比较推荐《数学竞赛研究教程》中的数论部分和潘承洞的《初等数论》。后者是大学教材,可以适当参考。

p.s:√ 关于组合部分的学习

组合数学与高考内容的计数原理,排列组合在知识上一脉相承,但问题类型上差距较大,想要入门竞赛组合题,还是需要练习和竞赛教师的指导。

可以说组合问题有一定的能掌握的共性和手法,但仍然很大程度上依赖天赋和运气,知识并不算太多。

参考联赛大纲,需要学习的内容除了要熟练的掌握高考中的计数原理,排列组合外,还需要学习图论等知识,并掌握组合极值问题的常用方法。

l 基本计数原理:加法原理,乘法原理。

l 排列问题,圆周排列等。

l 组合问题。

l 计数问题的常见模型:走格问题,排队问题,染色问题等。

l 一些常用定理:抽屉原理,容斤原理,极端原理等。

l 组合问题常用方法:算两次,调整法,构造法,递推法,母函数法等。

l 组合极值问题。

这些内容除了要熟练的掌握高考中的,计数原理,排列组合外,推荐参考书方面推荐《奥数教程》的计数原理内容;

《数学奥林匹克小丛书》11,13册,由张垚老师编著,难度梯度设置合理,知识覆盖全面,题目典型而有深度,解答细致易懂。即便是入门书籍,它也已经具有了相当的难度,能真正看好这本书,全国联赛的组合基础题肯定是不在话下的。

如有时间《数学竞赛研究教程》中的组合部分也应当参考。

高二阶段

新高二暑假到高二参赛

这个阶段就是验收成果的时候了,你直面的就是数学联赛。多做历年真题,积累考试经验。

这一阶段,不再过多推荐新的书,我们把侧重点放在复习之前学习的书籍上。但是有一本刊物:《中等数学》,它每年到了暑假就会发行几本增刊,有一本收集了上一年全国乃至全世界各地的考题,有一本就是各省的竞赛名师专门为联赛命制的模拟题,后者是你准备联赛的利器。

p.s:√ 关于应试练习

考试之前的练习,可以安排利用《数学奥林匹克小丛书》,《奥数教程》和《数学竞赛研究教程》复习上述内容,可以参考《高中数学竞赛培优教程》和其他模拟题册安排一试的复习和训练课程。

至于二试,可以利用《高中数学竞赛培优教程》复习知识,利用各种模拟题册来进行练习,进阶可以刷一下《数学奥林匹克命题人讲座》和《走向IMO》。具体内容不再复述了。

高二联赛后到高三联赛

高二的联赛是很重要的一个分水岭。如果你的竞赛目标是强省的省队,国赛金牌,集训队甚至更远,下面的推荐适合你。如果你的目标没有这么远,剩下的内容你可以完全忽略,前几个阶段的事情,你大可放慢速度。

关于代数,建议是刷完余红兵老师的《奥数教程》高三年级多项式部分即可。关于不等式,如果你想要练,建议是《数学奥林匹克小丛书高中卷5不等式的解题方法和技巧》,由苏勇和熊斌两位老师合著。

数论方面,推荐《数学奥林匹克命题人讲座——初等数论》,由冯志刚编写,上海科技教育出版社出版。

这本书涵盖了大量的习题,简直就是数论这一块的黄金题库,题目的质量实在是太高(大多数都是很难的,尤其是第一章难度最高),一道道刷过来,数论的能力会有质的飞越。

组合方面,推荐三本书,一本是《奥赛经典——奥林匹克数学中的组合问题》,这是组合这一块综合性的大百科全书,除了第一二章可以略看,后五章要认真刷完,题量大,题目质量很高,对于组合能力的提升要很大的帮助。

其余两本是《数学奥林匹克小丛书高中卷13组合极值》以及《高中数学竞赛专题讲座——组合构造》,都是由冯越峰老师编著。可选其一。上面收集的问题同样很精彩,尤其是后者,难度很大,有能力可以两本都刷,组合多练一些绝对错不了。

高三年级

新高三暑假到高三联赛

这一阶段,是学生在一系列拔高练习之后的回归期。在这一阶段,需要做好两件事。首先,把之前刷过的所有书都要过一遍,作为复习。

其次,高二暑假出来的那一本《中等数学》的增刊需要完成。复习过程中,多参见前面的推荐书目

从高三联赛到CMO

如果学生考进了省代表队,并且有资格参加国赛,那么数学竞赛之路还能继续往前走。联赛结束到国赛开始,还有一段时间,在这个阶段,学生需要刷的是三本书。

其中两本是《数学竞赛研究教程》的上下册,还有一本就是《奥数教程学习手册》高三年级,在解答部分结束之后有两个专题:组合问题和数论问题,上面收集的题目和所做的注解非常棒(两本书在上文均提到过)。

除了书之外,你还需要拔高难度去练习一些国家集训队测试、国家队选拔、美赛、罗马尼亚大师杯、IMO等试题,在《走向IMO》系列丛书中都有收录。

我们打造了六年一贯的培养体系,希望把优秀带给每个渴望优秀的家庭。

六年规划的竞赛体系的初中出口是“联赛早得奖,名校早签约”,高中出口为“竞赛一等奖,高考降本一”。

以上两个出口是我们为具有突出学科特长,以及学科竞赛发展天赋的学生所规划的,经过科学训练和自身努力,这两个出口是完全可以触及的。

“非学无以广才,非志无以成美。” 坚持自己的信仰,并付出自己艰辛的努力,持之以恒,美好的愿望就一定会实现。

祝愿已经踏上或即将开始数学竞赛征程的同学们,能在数学竞赛的道路上越走越远。

用户评论

棃海

这个文章对高中生参加数学竞赛提供了很多有用的建议。

    有6位网友表示赞同!

暖瞳

看完这篇指南后,我对高中数学竞赛规则有了更清晰的认识。

    有12位网友表示赞同!

优雅的叶子

附录的考纲让人一目了然,特别适合准备考试的学生。

    有19位网友表示赞同!

冷风谷离殇

文章中推荐的辅导书籍真是个惊喜,我已经开始阅读其中一本了

    有14位网友表示赞同!

我绝版了i

按照这个指南复习,发现以前学过的知识变得更加系统清楚。

    有5位网友表示赞同!

孤街浪途

感谢作者整理出这篇全面的高中数学竞赛规则攻略,非常实用。

    有17位网友表示赞同!

。婞褔vīp

跟着文章指导准备比赛,感觉自己的数学思维能力提升了不少。

    有5位网友表示赞同!

▼遗忘那段似水年华

这篇文章很好地结合了理论和实践建议,对参赛者十分友好。

    有6位网友表示赞同!

忘故

通过参考指南,找到了一些在课堂上没有讲解过的解题技巧。

    有10位网友表示赞同!

别留遗憾

作者分享的辅导书籍推荐非常专业,让人对竞赛内容充满期待。

    有17位网友表示赞同!

怪咖

这份高中数学竞赛指南是我准备比赛过程中的必备资料。

    有19位网友表示赞同!

拥抱

读完这篇文章后,我能明显感受到竞赛规则对于选手的重要性。

    有9位网友表示赞同!

抚笙

文章中的考试题型分析帮助我更好地了解了需要掌握的概念和技巧。

    有11位网友表示赞同!

(り。薆情海

推荐的辅导书籍提供了大量实例和练习题,非常适合自我学习。

    有15位网友表示赞同!

可儿

这篇指南教会了我在比赛中如何有效分配时间和资源。

    有19位网友表示赞同!

花开丶若相惜

通过这个指南,我学会了用新颖的角度去理解数学问题。

    有9位网友表示赞同!

半世晨晓。

准备竞赛时遇到的难点都能在文中找到解决的方法和案例。

    有19位网友表示赞同!

墨城烟柳

从这篇文章中学到的知识让我对参加数学竞赛充满信心。

    有14位网友表示赞同!

野兽之美

作者分享的经验对于提高比赛成绩特别有帮助。

    有12位网友表示赞同!

*巴黎铁塔

按照这篇文章整理的学习路径,我对高年级数学课程有了更深的理解。

    有18位网友表示赞同!

旧爱剩女

通过阅读指南和学习推荐书籍,我学会了如何高效地进行复习和准备。

    有15位网友表示赞同!

本文由发布,不代表千千择校网立场,转载联系作者并注明出处:https://www.qqzexiao.com/zyjy/9582.html

联系我们

在线咨询:点击这里给我发消息

微信号:weixin888

工作日:9:30-18:30,节假日休息